May 16, 2016

HIV vaccine design should adapt as virus mutates

By Quinn Eastman,

HIV is constantly mutating. That means the virus can, in effect, customize itself so that it is less visible to someone’s immune system.

If a newly HIV-infected person is fighting a virus that has already “pre-adapted” to their immune system, that has a strong influence on how quickly that person will progress to AIDS, a team of researchers led by scientists from Microsoft Research, the University of Alabama at Birmingham and Emory University report.

The results were published Monday, May 16 in Nature Medicine, and have implications for HIV vaccine design and how future vaccine studies should be conducted.

The findings make the case for “conserved elements” vaccines, which target parts of the virus that don’t change as much. They also suggest that a “mosaic” vaccine approach that seeks to include many variants of the virus would be less likely to succeed, the researchers say.

“As vaccines are developed for prevention of HIV, it is important to think about how we are designing it,” said Paul Goepfert, MD, director of the Alabama Vaccine Research Clinic at UAB. “To get the immune system to respond to the vaccine, you have to think about its response to the adapted form of HIV, and focus on those parts of the virus that are most difficult to undergo adaptation.”
“If we can't get functional responses to those adapted epitopes in the context of natural infection, it will be quite the challenge to get responses induced by a vaccine candidate,” says Eric Hunter, PhD, professor of pathology and laboratory medicine at Emory University School of Medicine, Emory Vaccine Center, and Yerkes National Primate Research Center. “We must be better than nature.”

Hunter is a Georgia Research Alliance Eminent Scholar and co-director of the Emory Center for AIDS Research.

More info